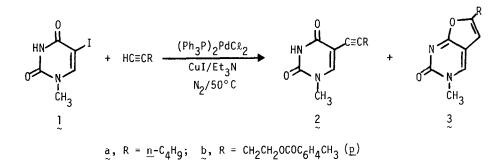
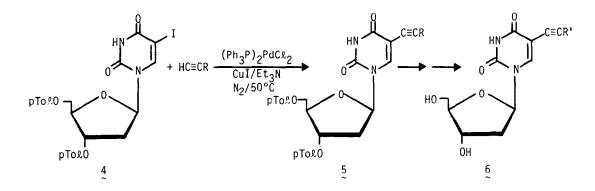
Tetrahedron Letters Vol. 22, pp 421 - 424 © Pergamon Press Ltd. 1981. Printed in Great Britain 0040-4039/81/0129-0421/02.00/0

NUCLEIC ACID RELATED COMPOUNDS. 31. SMOOTH AND EFFICIENT PALLADIUM-COPPER CATALYZED COUPLING OF TERMINAL ALKYNES WITH 5-IODOURACIL NUCLEOSIDES¹

Morris J. Robins^{*} and Philip J. Barr² Department of Chemistry, The University of Alberta Edmonton, Alberta, Canada T6G 2G2


Coupling of terminal alkynes with protected 5-iodouracil nucleosides in the presence of dichlorobis(triphenylphosphine)palladium and copper(I) iodide in triethylamine gives the corresponding 5-(alkyn-l-yl)uracil nucleosides in 72-92% yields.

Considerable interest in the development of 5-substituted pyrimidine deoxynucleosides as potential inhibitors of thymidylate synthetase³ and as putative antiviral agents⁴ exists at present. Recently several groups have described methods for the palladium-catalyzed coupling of olefins with 5-mercurated or 5-iodo derivatives of uracil based on the pioneering studies of Heck.⁵ Bergstrom⁶ was the first to report useful procedures for this carbon-carbon bond formation at C-5. Daves⁷, Jones and Walker⁸, and Mertes⁹ and their co-workers have described C-5 couplings based on these precedents.


We have been seeking an efficient procedure for coupling a versatile and easily functionalizable carbon chain to C-5 of uracil nucleosides. The acetylene grouping appeared attractive since it is readily subject to functional elaboration. In addition, 5-ethynyl-2'-deoxyuridine¹⁰ has potent biological activity <u>per se</u> and its 5'-monophosphate is a strong inhibitor of thymidylate synthetase.¹¹

Bergstrom had noted that attempts to couple 5-chloromercuri- or 5-iodouridine with phenylacetylene employing Heck's methods gave uridine or a complex mixture of products.^{6b} A modified procedure for coupling terminal alkynes with aryl and vinyl halides using palladium plus copper catalysis was reported by Sonogashira <u>et al</u>.¹² This mild general method was applied recently to substituted pyrimidines and quinazoline by Edo <u>et al</u>.¹³ We now wish to report the smooth coupling of terminal alkynes, including phenylacetylene, with 5-iodouracil compounds using a modification of this procedure.

Treatment of 5-10do-1-methyluracil¹⁴ (1) with 1-hexyne in degassed triethylamine at 50°C in the presence of catalytic quantities of $(Ph_3P)_2PdCl_2$ and CuI under a nitrogen atmosphere gave 5-hexynyl-1-methyluracil (2a) in 84% isolated yield plus a minor quantity (9%) of the fluorescent 6-n-butyl-3-methylfurano[2,3-d]pyrimidin-2-one (3a). The by-product furanopyrimidine (3a) was obtained in 92% yield upon treatment of isolated 2a with CuI in refluxing triethylamine/ methanol. Analogous coupling of 1 and 4-(p-toluyloxy)butyne gave the corresponding 5-alkynyl-1-methyluracil 2b in 85% isolated yield with only a trace of fluorescent (presumably cyclized) by-product.

The protected ribonucleoside 5-iodo-2',3',5'-tri- $\underline{0}$ -p-toluyluridine¹⁴ was coupled with 4-(p-toluyloxy)butyne to give the fully protected 5-alkynyl nucleoside in 92% yield. Similar coupling of 5-iodo-3',5'-di- $\underline{0}$ -p-toluyl-2'-deoxyuridine¹⁴ (4) with the alkynes listed gave the corresponding protected derivatives (5a-k) with near quantitative conversions. These products were deprotected to provide the 5-alkynyl-2'-deoxyuridine compounds (6a-j). In each case the

Coupling Reaction Time (hours)	R	Isolate of 5	d Yıeld (%)	<u>6</u> 	R'
10	с ₂ н ₅	a	91	a ~	с ₂ н ₅
3	$\underline{n} - C_3 H_7$	b	85	b	<u>n</u> -C ₃ H ₇
4	<u>n</u> -C ₄ H ₉	ç	89	ç	<u>n</u> -C ₄ H ₉
3	<u>n</u> -C ₅ H ₁₁	d	77	ď	n-C ₅ H ₁₁
12	C(CH ₃) ₃	e	89	e	C(CH ₃) ₃
18	Si(CH ₃) ₃	f	85	f	Н
1	с ₆ н ₅	ğ	91	ã	с _б н ₅
2	CH20THP	h	72	h	сн ₂ он
5	<u>n</u> -C ₂ H ₄ OTHP	i	85	1	<u>n</u> -C ₂ H ₄ OH
2.5	n-C2H40pTol	Ĵ	85		
4	<u>n</u> -С ₃ Н ₆ ОрТоя	ķ	87	j	<u>n</u> -С ₃ Н ₆ ОН

protected derivatives 5a-k were isolated by thorough evaporation of volatile materials in vacuo. The residue was dissolved in chloroform and this solution was washed with 5% aqueous EDTA solution, water, and dried over Na_2SO_4 . The mixture was filtered and the filtrate evaporated to a small volume. (When necessary, this solution was purified further by passage through a short column of neutral silica gel, using CHCl₃/MeOH (9:1) for elution.) Addition of 5 volumes of methanol then usually resulted in precipitation of a colorless product. The precipitated products were recrystallized from CHCl₃/MeOH.

Deprotection of 5h and 5i necessitated acid-catalyzed removal of the tetrahydropyranyl group using $CF_3CO_2H/MeOH/CH_2C\ell_2$ (5:10:15) for 1.5 hours at room temperature. The <u>p</u>-toluyl ester protecting groups were removed from 5a-k using NaOMe/MeOH. This treatment with methoxide also removed the trimethylsilyl function from 5f to yield the known 5-ethynyl-2'-deoxyuridine¹⁰ (6f) directly.

It may be noted that coupling of 4 with trimethylsilylacetylene followed by deprotection with NaOMe/MeOH provides a straightforward and convenient synthesis of 6f. Such direct modification of naturally occurring nucleosides avoids the diastereochemical separation and β -anomer yield problems associated with base, sugar coupling routes.¹⁰ This supports the view that preformed nucleoside transformations are extremely useful for high-yield syntheses of pure compounds of unambiguous structure.¹⁵

Functional modification of the alkynyl side chains and extension of this facile coupling to other nucleoside systems are currently under investigation. Experimental details¹⁶ and re-sults of biological studies will be reported.

ACKNOWLEDGMENT: We thank the National Cancer Institute of Canada, the Natural Sciences and Engineering Research Council (A5890), and The University of Alberta for generous financial support.

REFERENCES

- For the previous paper in this series see: M.J. Robins, S.D. Hawrelak, T. Kanai, J.-M. Seifert, and R. Mengel, J. Org. Chem., 44, 1317 (1979).
- 2. Isaak Walton Killam memorial postdoctoral fellow of The University of Alberta, 1978-1980.
- See for example: (a) D.V. Santi, <u>J. Med. Chem.</u>, <u>23</u>, 103 (1980); (b) J.S. Park, C.T-C. Chang, and M.P. Mertes, <u>J. Med. Chem.</u>, <u>22</u>, 1134 (1978); and references therein.
- For a recent review see: E. De Clercq, <u>Arch. Internatl. Physiol. Biochem.</u>, <u>87</u>, 353-395 (1979).
- 5. R.F. Heck, Acc. Chem. Res., 12, 146 (1979).
- 6. (a) J.L. Ruth and D.E. Bergstrom, <u>J. Org. Chem</u>., <u>43</u>, 2870 (1978); (b) D.E. Bergstrom and M.K. Ogawa, <u>J. Am. Chem. Soc</u>., 100, 8106 (1978); and prior communications.

- I. Arai and G.D. Daves, Jr., <u>J. Am. Chem. Soc.</u>, <u>100</u>, 287 (1978); I. Arai and G.D. Daves, <u>J. Heterocycl. Chem.</u>, <u>15</u>, 351 (1978).
- 8. A.S. Jones, G. Verhelst, and R.T. Walker, Tetrahedron Lett., 4415 (1979).
- 9. C.F. Bigge, P. Kalaritis, J.R. Deck, and M.P. Mertes, <u>J. Am. Chem. Soc</u>., <u>102</u>, 2033 (1980).
- (a) P.J. Barr, A.S. Jones, P. Serafinowski, and R.T. Walker, <u>J. Chem. Soc.</u>, <u>Perkin I</u>, 1263 (1978); (b) M. Bobek and A. Bloch in "Chemistry and Biology of Nucleosides and Nucleotides," R.E. Harmon, R.K. Robins, and L.B. Townsend, Eds., Academic Press, New York, 1978, pp. 135-148.
- T.I. Kalman and J.C. Yalowich in "Drug Action and Design: Mechanism-Based Enzyme Inhibitors," T.I. Kalman, Ed., Elsevier North Holland, New York, 1979, pp. 75-91.
- 12. K. Sonogashira, Y. Tohda, and N. Hagihara, Tetrahedron Lett., 4467 (1975).
- 13. K. Edo, T. Sakamoto, and H. Yamanaka, Chem. Pharm. Bull, 26, 3843 (1978).
- 14. Prepared using iodine monochloride by an improved procedure to be published.
- M.J. Robins in "Bioorganic Chemistry," Vol. III, Macro- and Multimolecular Systems, E.E. van Tamelen, Ed., Academic Press, New York, 1977, Chapter 11.
- Satisfactory elemental analyses, UV, and NMR spectral data have been obtained for new compounds.

(Received in USA 14 August 1980)